If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3x+4x+190=180
We move all terms to the left:
x^2+3x+4x+190-(180)=0
We add all the numbers together, and all the variables
x^2+7x+10=0
a = 1; b = 7; c = +10;
Δ = b2-4ac
Δ = 72-4·1·10
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-3}{2*1}=\frac{-10}{2} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+3}{2*1}=\frac{-4}{2} =-2 $
| x^2+7x-3=|x+4|+6 | | 4400.00=4000.00(1+r(2)) | | 4x+2+x=7x | | 4x–20+2x–30+x+20=180 | | 13x+36+9x-14= | | 19z−16z=18 | | 8x+4=6x+36 | | x^2+7x-3=x+4+6 | | (-3-4i)(1+2i)=0 | | -5(4u-1)+6=-2(u+5) | | 2x^-20=124 | | 5x-17+3x+14=8x-3 | | 10= √(36+16a^2) | | |7y-9|=|6y+1| | | 5x^2=5780 | | (6v+6)+(7v-6)=180 | | 5780=5x^2 | | 3/5x=14/15 | | 6(2x-2))=24 | | –8j=8−10j | | 10+2g=4 | | 1/3x+4=-2/3x-3 | | 34/b=48 | | 4x^2+9=153 | | |5x|+6=26 | | 4(x+2)-3(x-1)=7 | | 1-2/(3y)=6/15 | | -3(n+6)=-63 | | 17=m-3-3m | | 6(4x-1)+6=-96 | | 2x+14=12+2x | | x^2-11x+64=40 |